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SUMMARY .
PR y55 0%

The general problem coﬁsidered is the restoring of a perturbed system
to its equilibrium state with least expenditure of effort by the controlling
elements. The measure of effort introduced encompasses cases in which the
magnitude of effort expenditure does not depend explicitly on the state of the
controlled system,

It is shown that minimum-effort control is in principle defined by a
time-varying feedback process, Closed-form solutions are given for several
examples involving a minimum-<~fuel criterion, and an example involving a
quadratic measure of effort. In each case treated the minimum-effort control

is obtained as a time~varying function of the instantaneous state of the system.




INTRODUCTION

Many present-day applications require that a system be capable of
operating over extended periods with a limited supply of energy for control
purposes, In such cases the efficient management of some exhaustible quantity
such as fuel, electrical energy, propellant, etc., becomes a critical design
problem.

The purpose here is to investigate control strategies which require
minimum effort, where effort is understood to represent some specific
consumable quantity of interest, Since closed~loop or feedback control
techniques are generally preferable to open-loop techniques, the aim will be
to derive the optimal strategy in the form of a feedback control law. A solution
in this form may enhance the possibility that an optimal strategy can actually
be implemented. In cases where such an implementation is not feasible, the
optimal strategy may even so provide valuable insight into ways of synthesizing
a suitable sub-optimal control law. In any case, a knowledge of the optimal
control strategy will define a definite lower bound on the effort required to
accomplish a given task, and can, therefore, provide a sound basis of comparison
for other control strategies.

1. Formulation of the Problem

The instantaneous state of a system will be described by an n-dimensional

~"iy"'ec;tor x(t). A system of the type being considered is described by the linear,

x(t) = Ax(t)+ Bu(t) , (1)

i

¢ r~dimensgional vector control function whose components are

subject to the amplitude constraints, Iui(t)] $1,i=1,2. . ., ¥ Aand B

are constant nxn and nxr matrices respectively, and the column vectors of B

will be denoted by by, i =1, 2, . .5 r. The'state variables, x,(t), i =1, 2, . .n,
/




are chosen such that they are continuous in time; even at discontinuities of
uft). It is assumed that all state variables are controlled By the vector u{t),
The requirement that the control inputs u; (t) be limited in amplitude is
a common one in practice, reflecting the limitations of practical hardware
elements. These constraints can be briefly expressed by requiring that at
any instant, u(t) €« (), where () is a closed region (hyper-cube) in r-dimensional
space. An additional requirement will be that u(t) is a piecewise continuous
function of time, Any piecewise continuous function u(t) taking its values in Q
will be termed an admissible control.
It is supposed that the system must be transferred from a known initial
state, E‘.(to) = X0 to a definite final state, 3:_(tf) =X where X¢ is assumed to
be an equilibrium state of the uncontrolled system (i.e.; X, satisfies A X = _Q)n
There is no loss of generality in designating the final state as, X, = 0, the origin
of state space. Hence, the control u(t) is required to influence the system (1)
in a way which satisfies the boundary conditions,

x(t)=x , x(t)=0 . (2)

An important aspect of the problem formulation given here is that the
total time allowed for the transition X, ——r0 is treated as a fixed parameter.
Denote the total length of the transition interval [to" tf] by Ty where
To = 1:f - too Then, this amounts to fixing the final instant as 1:f = t0 + Tou
Of course, the value chosen for T o caanot be less than the minimum time
required for the transition X, 0. Corresponding to a specific choice for T0
there exists a minimum-time isochrone (hereafter termed the Toeisochrone)
enclosing all st
interval of length T, The initial state x, must therefgre lie inside the

Tovisochrone,, or equivalently, To must be chosen large enough to include X,

within the isochrone.
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Under the assumption that x, lies inside the Toois‘ochrone. there
exist many admissible controls which accomplish the transition X 0in
the allowed time T, The problem is to find one which is best according
to a specific criterion, |

It is supposed that, to every transition of the system from x, to 0,
there is associated a number, denoted by E, which represents the total effort
expended by the control in effecting this transition. For the present, the

quantity E will be defined by an integral of the type,

te
E = f ¢ (u(t) dt, (3)
to
where ¢ (u) is a sufficiently smooth, non-negative, scalar-valued function of u
with the property, ¢(0) = 0. For a particular problem, E may represent, for
example, the total energy or fuel consumed by the control elements of the
system.

The problem considered here is the following: from among all control
functions u(t) which cause the boundary conditions (2) to be satisfied, find one
which yields the smallest value of E. Such a control function will be called an
optimal control.

Let E ¥ denote the value imparted to the integral (3) by an optimal control.
It is clear that this value will in general depend on the allowed time To as well
as the initial state X, That is E¥ = E*(xo. To)" In fact, one can readily

show that,
E* (x,o T, e ) € E* (x,o T)s for alle > 0. (4)

This means that, by increasing the time allowed for the transition x, — 9_, the

optimal value of E may decrease, but can never increase. Inequality (4) also
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explains why T, must be regarded as a fixed parameter in this problem.
With T, left unspecified, (4) implies that a minimization of E would not be
possible in general. On the other hand, fixing To does not restrict the
generality of the results since the dependence of E* on '1‘0 can be determined

once the fixed-time problem is solved.

1L Procedure for Deriving the Optimal Control Logic

The Pontryagin maximum principle ( [_1] » [21 s [8]) will be used to
derive a necessary coandition for optimality of a control u(t). Corresponding

to the problem described above, the Hamiltonian function can be written as, *

Hex(t)o i) ut) ) = p'() [A x(t) + Bu®)] - olae) ). )
where .E"t) is an n~-dimensional vector function satisfying the adjoint differential
equation,

pl) = -atp@) . (6)

Since boundary conditions on _p_(t) are not specified, equation (6) does not define
a unique vector fu.ﬁction. Let _q_* (t) be an admissible control function, and

x* (t) the resulting trajectory (solution of (1) ) emanating from X, According
to the maximum principle, if u* (t) is an optimal control, there exists a function
p* (t) satisfying (6) such that for every instant t of the control interval

[t o° tf] » H (x¥* (t), p*¥ (t), u*(t) ) achieves the maximum value of the
Hamiltonian (5) with respect to all admissible controls. For the present

problem, this condition can be expressed as,

[,p,*‘ () B u* () - ¢ (u* (t) )] - max {_g‘(t) B u(t) - ¢lalt) ):} )

u €

where (7) must hold at every instant of the interval [top tf] .

The superscript t denotes the transpose of a vector or matrix,
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Thus, if u*(t) is an optimal control, the maximum principle guarantees
that a function B(t) exists such that, at any instant te[t o° th » the value of

u* (t) can be determined as that value of u(t) which maximizes the expression,
P (p(t) uft)) = [_p_t(t) B uft) - ¢ (u(t) )] . (8)

The question of uniqueness arises here. That is, at a2 given instant
there may be more than one value of u(t) which (corresponding to some vector
p(t) ) achieves the maximum of P ( p(t), u(t) ). Hence, for this problem in .
general, an optimal control may not be unique. However, in specific cases
where 2* (t) uniquely achieves the maximum of P ( pit)e g_(t) ) for all t on
[to“ th » u* (t) will be the unique optimal control. ¥

It is convenient to define a particular function p(t) in terms of its value
at the instant tf, where the notation Pe = B(tf) will be used. Thus, any solution
of the adjoint equation (6) can be expressed as,

Abr

plt) = ¢ " pe (9)

where, T = tf - t, is the reverse~time measured from t,. The variable T can
be thought of as being the time-to-go, or time remaining before the final instant

is reached. With (9), the function P defined by (8) can be expressed as,

P (pp To u) =[2; eATBg-Mg)] . (10)

Any optimal control satisfies the maximum principle (7) with respect
to some adjoint function p(t), or equivalently, with respect to some vector By
Corresponding to a fixed Py the control which satisfies the maximum principle
is obtained from (10) as,

u(pp T) = argmax P (ppp To @) . (11)
ue

This follows from an argument similar to one employed in [(l] » 8ec. 18,
to prove uniqueness of minimum-time controls for linear systems.,
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Hereafter it will be assumed that the matrix A and the function ¢$(u) are given
such that (11) defines a unique vector u for any choice of the arguments (Efy T).
Under this assumption, all optimal controls will be unique. For problems
excluded by this assumption, the following arguments can be amended to include
only those optimal controls which are unique.

Since an optimal trajectory must intercept the origin 0 at the final
instant t,, the optimal trajectory corresponding to a control defined by (11)
can be obtained by reverse~-time integration of the system equations (1). The

result of this integration is

T
_!5(2fp T) = -f QA(B'T)B_Q(BP s)ds . (12)

o

For a particular choice of the arguments (Bf" T), (11) and {12) define
two unique vectors, l_;_(Bf. T) and _:_:_(gf, T). Consider a fixed value of T, say
Tl‘ 0%t T1 $ T » representing a particular instant t of the control interval,
where 1:1 = 1:f - TI“ Then to every B¢ there corresponds a E‘Bf' Tl) and an
;_:_(_gf., Tl)" via (11) and (12), representing possible instantaneous values of E(tl)
and ?E(tl) for an optimal solution. Since all optimal controls are unique here,
to every such state gc_(tl) there will correspond only one vector E(tl). If all P¢
are taken into account, then all possible optimal combinations of _:_t(tl) and g(tl)
will be established by (11) and (12). Under the assumption that all such
combinations can be tabulaﬁed., this means that, at the instant tlp the optimal
instantaneous value of _u_(tl) is dependent only on the instantaneous state E(tl)o
Moreover, at an arbitrary instant t of the control interval, the optimal choice
ependent only on x(t) and T, the time-to-go at that instant.

Define an (n + r + 1)-dimensional vector-valued function _z_(Bf, T) as,

zlpp T) = x(pp T)xulpp TIxT (13)
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where x denotes the cartesian product. Then (13), with (11) and (12), defines
a mapping from (n + 1)-space (occupied by Pgx T) to an (n + 1)-dimensional
surface in (n + r + 1)~space. Figure (1) gives a conceptual illustration of a
cross~-section of this surface corresponding to a particular instant to
The intersection of the surface with the plane T = Tl' where T, = te -t
is denoted by Z(Tl)" As indicated in Figure (1), Z(Tl) yields the optimal
control logic at the instant t). That is, corresponding to an instantaneous
state x(t l)" the instantaneous optimal control u (tl) is defined by the point
_:_:(tl) x B-(tl) x 'I‘1 lying on Z(Tl)

This means that, for problems of the type being considered, an optimal
control is in principle de&cribable in the form, |

uft) = vix(t), T) (14)
which implies a time-variable, or programmed, feedback control process
such as that illustrated in Figure (2).

Determining the optimal control logic for a particular problem may be
a difficult task, and it may not be possible to obtain vix(t); T) in closed form.
The degree of difficulty is evidently dependent on the order of the system, the
- characteristic roots of A, the number of control inputs, and the performance
criterion, which means the form of ${u). Once this logic is determined, however,
it will encompass all minimum-effort transitions in the system.

Several examples will now be considered to illustrate how the optimal

control logic (14) can be derived in specific cases.

III. The Minimum Fuel Problem

The so-called minimum fuel problem is characterized by the performance

integral,



E

"

c t
j $(u) dt =f

t

3 _r
[:z ¢ Iui(t)i] a (15)

t i=1
o

where, 5 >0,i=1,2, .. .o o This problem arises, for example, when

rockets or reaction~-jets are used as controlling elements. In such cases

the quantity E defined by (15) represents fuel or propellant consumption.

An optimal control is given in terms of some fixed vector B¢ and the

time-to-go variable, T, by relation (11). Since, in this case, ¢{u) is a sum

of terms, each of which depends on only one control variable, P (.Rf’ T, u)

is maximized independently for each Use i=1,2, .. .5 rs There are two

classes of problems to be considered here.

Class It

Class II:

The characteristic roots of the system matrix A are all
nonzero, Relation (11) yields, fori=1, 2, . . ., 1,

sgn [2; AT P_i:] ’ forl‘g; AT b, ' & <
u.(pe T) = (16)

AT

0 .forlgz e Eil-gci

At least one characteristic root of A is zero. For this case
one or more vectors P¢ can be found such that for at least

one value of the index i, 2: eAT

-]?fi =cyo This assertion
depends on the system (1) being controllable, and is readily
proved by straightforward means. When A has at least one

zero characteristic root, then for some value of i the vector
AT

e ]_3_1 will contain one element which is constant. .An obvious
choice for P¢ then yiclds 3; eAT_l_-ai = ¢

Application of (11) in such cases yield~,
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(a) ui(PfD T) =0 [

t AT

or (b) sgn ui(_nf, T) = sgn[_Pf e b

-i] (17)
That is, for any T, ui(pr T) is allowed to satisfy either
(a) or (b) of (17). For these values of_Pf., therefore, the

maximum principle does not prescribe a unique control

function,

For problems of Class I, (16) deﬁnes a unique function E(Bfﬂ T) for any
choice of Py and hence, all optimal controls are unique. From previous
discussions this meé.ns that any optimal control is in principle obtainable as
a time-variable function of the instantaneous state, Moreover, for this problem

each component of an optimal control can be expressed as,
ui(t) = vi( _’_‘_(t)l T, L4 i = 19 20 o o op FTo (18)

From (16), each of these components can assume only the values +1, -1, or 0,
and must therefore be piecewise constant and, in general, discoatinuous with
time. The task of determining the control logic v( x(t); T ) therefore reduces
to finding, for each control variable ui(t),, i=1, 2, c s .o r, those time-varying
regions of state space corresponding to the three possible instantaneous values
of ui(t).. Two specific problems of Class I are discussed in the examples to
follow

Problems of Class II require a slightly modified treatment. As indicated

by (17), for some Ps the maximum principle gives only an ambiguous specification

of E(Efg T) by {11}, Non-unigue optimal controls of the type which arise in such

[«

cases have been termed singular controls in the literature. (EZ])
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Despite the occurrence of singular controls for problems of Class II,
one can nevertheless derive a control logic which always yields an optimal
trajectory. By proceeding in the same manner as for problems of Class I,
the logic, v( _:_:_(t). T ), yielding all unique solutions can be derived. And, in
those time=-varying regions of state space where the optimal value of a ui(t)
is not unique, one can choose ui(t) = 0. With this strategy, a trajectory starting
in a region of non-unique control must at some instant enter a region of unique
control,

The simple 1/ sz plant provides an interesting example of a Class II
problem having application in the attitude control of satellites. A solution of
this problem in the form of (14) was first presented by B. Friedland and
H. Ladd in [3] . Other treatments can be found in [_4], [_5] o [6] 0 a.nd[?] o
Example 1

Let the system equations be given as,

° 0 1 0
x(t) =Q >_=_=_(t) +< )u(t) > (19)
1 0 1

where x(t) = { x) (t), xz(t) )t describes the instantaneous state of the system, and
u(t) is the scalar control function. The characteristic roots of the system are

obtained from the e'quation,

det [x1-a)=0, (20)
which yields for this case, A = +i. Since there are no zero roots, this problem
belongs to Class L

Dynamical behavior of the system can be depicted by motion of x(t) in the
phase plane, as illustrated in Figure (3). In forward time, x(t) follows a
trajectory which proceeds ip a clockwise direction aboyt the instantaneous

center-point, X, = {uft), 0 )t . On intervals where ult) is constant, the elapsed



time between two points on the trajectory arc is equal to the angle subtended

by radii drawn to those points;, as indicated in Figure (3). A point on the
trajectory corresponding to an instant at which a piecewise-constant u(t) changes
value is called a switching point.

The performance integral (15) becomes for this example,

te
E = f |u(t)| dat . (21)
t()

From (16), any optimal control is given in terms of T and some vector Py by

the switching rule,

sgn {p: eAT 3] » for

u(pp T) = (22)

0 for _E:eATl:_|<l

The aim here is to derive the control law, u(t) = v( x(t), T).
Consider an arbitrary instant t, of the control interval, and denote the time-to-go
at that instant by Ty- Let Pf denote the plane in which the vector Bg= (pﬂ, pfz)t
takes its value, Then, corresponding to the instant tyo Pf can be partitioned
into three mutually exclusive regions, R-l-‘Tl)’ R-(Tl)" and Ro(Tl)‘ which are

defined as,

R+(T1) : allBf such that, 2; eATl_l?_ 2]
R (T,) : all p, such that, pt e Tip € .1 - (23)
B! B Pg =
AT, ¢

Ro(Tl) : all B¢ such that, -1 <2f e

The division of Pf into these three regions is illustrated in Figure (4),
where the boundaries of R-e-(Tl) and R‘_('I;l) have been denoted by S +(T1) and
S_(T;). respectively. With these definitions, and using (22), u(py, T,) is obtained

for any B¢ by the following rule.
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Rt

ulpes T)) 1, if p, e R+(Tl) »

H

u.(_Pfo Tl) "’19 ifo‘ R-(Tl) 3 (24’

uipf., Tl) = 0, ifpft R’oﬂ_‘l) 0

(24) is interpreted as follows: The P¢ lying in R+(T1) correspond via (22) to
all optimal controls which assume the value +1 at the instant tyo Similarly,
the P in R_ (Tl) and Ro(Tl) correspond to all optimal controls which assume
the values -1 and 0, respectively, at tl" Thus, in order to establish an
instantaneous control law, u(tl) = v{ _:_c_(tl). Tl ) it remains to establich a
correspondence between points in ?f and points in the state space (phase plane),
which is denoted here by X. The desired mapping from 1'-"f to X is provided by

(12), which becomes for this case,

x(pp T f (c:;; g ! ; u (pp 8) ds . (25)

Under the mapping defined by (25), let X +(T1)9 X_(Tl) and xo(TI)
be the images of R+(Tl)“ R_(Tl)p and Ro(Tl)’ respectively. Also let
L+(T1) and L-(Tl) be the images of S+(Tl) and S (Tl)., respectively. Then,
before proceeding with the details of this mapping, the results obtained so far
can be summarized as follows:
At an arbitrary instant t1 of the control interval, where, t1 = tf - Tlg
the instantaneous value of an optimal control is given in terms of the

instantaneous state, 5“1)9 by the rule,
1, if x(t)) e X (T))

u(tl) =0 09 if E"tl‘, ® XO Tl" (26)

-1, if xft)) e X_(T))
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For the present problem it is sufficient to establish only the images
of S+(Tl) and S-(Tl)° It follows from (22) that L+(T1) is the locus of all
possible states at which an optimal control can switch between the values 0 and
+1 at the instant t1, Similarly, L-(Tl) gives all states at which a switching
between the values 0 and -1 can occur. It also follows from (22) and (25) that
L‘(Tl) is the reflection of L+(T1) about the origin of X. Thus, only L+(T1)
need actually be constructed here.

Let 'I‘1 be decornposed as,
T, = ke+ £ (27)

where, k is a positive integer or zero, and § is a number in the range,
05¢<m, Corresponding to any point B¢ lying on S +(Tl),, the switching rule (22)
yields a control function u(Bfg T) which can take either of the forms (a) or (b)
shown in Figure (5). Note that the intervals on which a particular u(gfa T) is
nonzero are all of equal length A, 0 A% ™, #Jhere A depends only on “ Py u o
For any such Pea state vector 5‘2{9 Tl) is established from (25) by means of
an elementary calculation. With A as a parameter, and taking all Py on

S +(T1) into account, the results of these calculations can be tabulated as follows:

(2) u(tl +0)=1

( (1 - cos 4)
(k+l)< ) for 0 A £¢
- 8in A ‘

(k+1«cos §& -k cos A)

, for £€A %y
{-sin £ - k sin A)
N r'd

_’E,(tl) = ¢

-



(28)
(b) uft, +0) =0

( {1 - cos A)
ek , for0& Afqn - ¢
sin A

(ck+cos § + (k+ 1) cos 4)

xt) o

,form-§ 2 A%
(sin § -~ (k + 1) sin &)

-

Given a specific value for Tl’ and therefore definite values for k and £,
(28) defines L +(T1) as a locus of points in the phase plane, with A being a
parameter along the locus.

For the sake of definiteness, let T, = 3w/2. Thenk =1 and £ =w/2.
With these values, (28) describes L +(T1) as illustrated in Figure (6). Also
shown are, L (T 1), which is obtained by symmetry, the T lnisochronep and, for
comparison purposes, the well-known Bushaw curve, which gives the minimum-
time switching locus for this problem.® The union of L +(Tl) and L (Tl)
forms two closed curves which become the optimal switching-locus for the
instant t. ‘That is, an optimal control changes value at t, if and only if
_ag(tl) lies on this locus.,

The region enclosed by the switching locus is evidently X o(T l)o Also,
X+(T1) and X_(Tl) are the regions bounded by the leisochrone and L+(T1)
and L_ (Tl)., respectively. Figure (6) is therefore a graphical presentation of
the instantaneous control law, u(tl) = v(’-‘(tl)" Tl)“ for T1 = 39/2. For any
state _:_g_(tl) lying inside the T1=>iso<:hroneD the unique optirmal value of u(tl) is
prescribed according to the rule (26). Any state E(tl) lying outside the
Tlaisochrone cannot be restored tc the origin at the final instant te and hence

there is no solution in such cases.

%r 1 ' S -4 (3 ‘ - °
See ‘1} for a discussion of the minimum-time solution and a derivation of
the Bushaw curyve. Details for the construction of rninimum-time isochrones
are given in L‘S]and 8] o



15,

Similarly, for any instant the optimal value of u(t) is determined by
the location of x(t) relative to the time-varying regions, X +('I'),, X _(T), and
XO(T)D Since an optimal control is piecewise constant, it is sufficient to
determine only the i;xstants at which the system trajectory crosses the time-
varying switching curve, It is deduced from (Zé) that, with T =kw + £, the
optimal switching-curve is constructed as shown in Figure (7). Since the
curve is symmetrical about 0, only the portion in the left half-plane is shown.

As an optimal trajectory proceeds toward its eventual interception
with O at the final instant, the optimal switching-curve continually contracts
and finally, at to it shrinks to the single point 0. Figure (8) illustrates how
the switching curve propogates with T,

Example 2

In example 1 the minimum-fuel control logic was derived for a single
input to a second-order plant. If two control inputs are involved, the same
general procedure, with éomewha.t more lengthy calculations, leads to tﬁe
minimum-fuel logic for each control variable. The object here will be merely
to exhibit the solution of a two~input problem. A more detailed treatment can
be found in |5] .

For this case the system is described by,

0 1 1 0
x(t) =< > x(t) + < >}_1_(t) > (29)
=] 0 0 1

where u(t) = (ul(t). uz(t) )t is the two-dimensional, vector control function.

The performance integral (15)will be taken as,

te
E = f Dulmi + qu(t)l] dt . (30)
t i
(o]
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This is again a Class I problem. Any optimal control is therefore

describable as,
v,(x(t), T) ‘
ult) = : . (31)
vy xt) T)
From (16) the optimal control variables are always piecewise constant.

Optimal phase-plane trajectories are therefore composed of circular arcs

which move about the instantaneous center-point, X = (- ultt),, uz(t) )t.,

By proceeding in the manner outlined in example 1, each control
variable can be represented by a function of the instantaneous state and time-to-go.
Figure (9) illustrates the optimal logic for ul(t) for the particular instant
T = 5w/4. Corresponding to any state x(t) which lies inside or on the minimum-
time isochrone, there is a unique optimal value of uy (t). Also shown in
Figure (9) is the minimum-~time switching locus ( [1] ) This curve has no
bearing on the minimum-«fuel control logic and is shown here only for comparison,
Details for the construction of minimum-time isochrones (where the effects of
both control variables must be included) are given in [5 ]..

As time=to-go decreases toward zero, the various regions indicated in
Figure(9) contract. The time~varying boundary enclosing states for which
u; =0 is the minimum-fuel switching curve for u,(t). A similar result is
obtained for uz(t)o The composite optimal control logic for both ul(t) and uz(t)
is illustrated in Figure (10) for the instant, T = 3w/2. There are nine regions
within the isochrone, each of which corresponds to a particular value of
u = (ulg uz)to As T decreases, these regions contract, and at any instant
prescribe the optimal control vector u(t) as a function of the instantaneous

state x(t).
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IV, A Quadratic Effort Criterion

Consider next a class of problems for which control effort is defined

by an integral of the type,

t 1
f r
f [Z ¢ ui(t)zJ a , (32)

to i=1

o]

where ci> 0, i=1, 2, .. 0, rs
For such problems it is found from (11) that the components of an
optimal control are given, fori=1, 2, . . ., r, by,

( c:'l 2; e‘AT_I_:»_iT » for

1
ui(pr T) = ] i (33)
h l.:gz AT h, | o for|pp T | 2 ¢

Since (33) defines a unique vector u for every choice of the arguments (Bf, T),

t AT
YL A

any optimal control is unique for this problem. Hence, any optimal control
can in principle be obtained via a programmed-feedback control law in the form
of (18).

Note that, unlike the minimum-fuel case, the optimal control variables
with criterion (32) are allowed to assume nonzero values which are less in
magnitude than unity. Since (33) does not allow u, Z 0 on any interval, periods
of "coasting' cannot occur for this problem.

Example 3

Consider a system described by the equation,
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with a quadratic effort index defined by,

ts
E = 1 j [u(t)]z dt . (35)
t
[o]

For this case {33) yields,

|

(pfz + T pgy) . for I P+ T pﬂl !
ufper T) = (36)

2
sz*TPnl 1

sgn (pg, + T pgy), for

Let T, be the time-to-go at some instant t,, t_ £ t) < t.. If all possible
choices of = (pﬂ» pfz)t are considered,. (36) defines all functions of T which
are of the three types illustrated in Figure (11). Functions of type I are saturated
att,. and become unsaturated at a subsequent instant of the control interval.
They may or may not saturate again at the opposite limit. Type III functions are
unsaturated on the entire control interval. Type Il functions are unsaturated at
tye but become saturated before the final instant is reached.

Reverse-time integration of the system equations is accomplished by

(12), which becomes for this problem,

T
(s - T)
§(B£& T) = 'f ( 1 )u(nft 8) ds ? (37)
o

where T denotes an arbitrary value of time-to~go. By means of (37), controls
of type I establish all states x(t) lying in the regions labeled I in Figure (12).
These regions vary with T and yield all states corresponding to optimal controls
which are instantaneously saturated. Similarly, controls of types II and III

establish all states lying in regions Il and III, respectively, in Figure (12).
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The outer boundary in Figure (12) is the T-isochrone. As T decreases,
this boundary contracts, and at any instant defines the region of all states which
can be restored to 0 at the final instant by an admissible control function. For
any state lying within this contracting isochrone there is a unique optimal value
for u(t). It is not difficult to show that, with regions I, II, and III defined as in

Figure (12), the 6ptimal control logic for this problem is given by the following

relations.
Region It u(t) = %1
- 2 -
(T - x,}
Region II: [ Oéxzs-‘T ' uft) = -g— ———-—Zz— -1
|7 by + T /2) ]
., (T + x,) 7
-T€x, £0 at) = |§ ——F5— 4
L SXp =Y |7 & - T2)
Region III: uft) = = Tiz X - -4.i.x2

It is interesting to consider how a trajectory in Region III approaches
the final point (xlp xZ)t = (0, O)to With u(}_)f,, T) given by (36) { ju] < 1 in Region III),

the integration (37) gives,

) T2 . T3
Xy TP 77 Py &
, (39)
Xy = =Pg,T = 2-2-
2 ° “Pgpt = Pgy 2 ]

As an example suppose Pg and Py, aTe different from zero. For T very small,

P
and providing that(:r—f—l—) T, (39) yields,
£2

2
oL — -G
Xy T Pgp T e x, = -pe T 5




which means that in this case the final portion of the trajectory approaches

the parabola,
2
Xy = 22
1 7 Zpg,

The case Pgp = 0 is also interesting. For this case one obtains from (39),

: =l”{_—z 3/2
Exlt 3 ;pﬂl lle ¢



CONCLUSION

In the regulation of stationary linear systems, the control strategy
which achieves the minimum expeaditure of control effort has been identified
as a time~varying feedback process. The optimal control inputs were found to
depend only on the instantaneous state of the controlled system, and the
instantaneous time~to-go, Derivation of the control logic in a specific case
may be a difficult task, depending on the complexity of the system, and a
closed-form solution is not guaranteed. The general procedure for deriving
the control logic has been outlined, and was used to obtain closed-~form solutions
for several examples,

The so-called minimum-fuel problem was discussed and the optimal
control law derived in the specific case of a second~order plant with one control
input. The solution for the problem with two inputs was exhibited. In both cases
the minimum-fuel control logic is described by time-varying switéhing curves
in the phase plane. Problems involving a quadratic measure of effort were
briefly discussed and the optimal control law was obtained for a specific
second-order example.

Strictly speaking, since the optimal feedback processes described here
require an external time reference in order to determine time-to-go, they do
not yield true closed-loop control. However, for a single transition of the
system, the optimal strategy gives strictly a closed-loop control which is

incidentally capable of handling small unexpected disturbances.
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FIGURE CAPTIONS

Fig, 1 < Jetermination of the instantaneous ¢ptimal control from the
time~-to-go and instantanecous state,
Fig. 2 = JSchematic representation of optimal, programmed-feedback control
process,
1
Fig. 3 - [Phase-Plane representation of system motion. System :2‘;_‘;' .
Fig., 4 = Partitioning of the plane Pf into three mutually exclusive regions.
Fig. 5 = Possible forms of control functions corresponding to points By
lying on S.(T)).
Fig, 6 = The optimal control logic for an instant when time-to-go is,
T = 3n/2,
Fig. 7 = Construction of the optimal switching=curve for arbitrary time-to=go,
where T =kn + £,
Fig. 8 = Propagation of the optimal switching~curve with time-to=go.
Fig. 9 - Instantaneous logic for determining ul(t) in the two=input
case; T = 5n/4,
Fig. 10 - The composite optimal control logic for u = Kulg uz);; T = 3=/2.
Fig. 11 = Possible forms of an optimal control function for the quadratic
effort example. Systern 1/ 2,
Fig. 12 = The time-varying optimal control law, u = v(x, T), for the quadratic

effort example., See Equation (38).
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